The Ultra Data UD3000
A Next Generation Video Processor Core

Pascal Clève, W. Patrick Hays, Jonah Probell

www.ultradatacorp.com
Outline

- The challenge of high-definition video
- Architectural approaches
- Block diagrams
- Architecture for optimal performance
- Data flow
- Application: HD video decoder chip
High Definition

- HDTV consumer products are coming
 - DVD players
 - Digital cable receivers
 - Digital satellite broadcast receivers
 - Personal video recorders
- HDTV has 6x the pixels of SDTV
 - 63 megapixels per second
- Next generation compression algorithms are needed to meet bandwidth and storage constraints
Next Generation Codecs

• Many next generation codecs:
 ▪ ITU-T/ISO H.264 MPEG4 Part 10 AVC
 ▪ Microsoft Windows Media Video 9
 ▪ On2 Technologies VP6

• ~10x as many decisions in outer loop code
 — CABAC bitstream compression
 — Nine intra prediction modes
 — Variable pixel block sizes, down to 4x4
 — Motion vector dependent deblocking filter

• RISC architectures do not have sufficient performance

• High performance DSPs are too costly
Hardwired Approach

- MPEG2 hardware decoder
- H.264 hardware decoder
- WMV9 hardware decoder

Input: bitstream
Output: frame data
Programmable Approach

bitstream → Programmable decoder → frame data
UD3000 Key Features

- Multiprocessor architecture for pipelined dataflow
- Outer loop processors (OLPs) for high level decision making
- Inner loop processors (ILPs) for pixel processing
 - 32-bit control unit (CU)
 - 64-bit vector unit (VU)
- Shared 64-bit dual-port DMEMs & FIFOs for moving data between processors
- Smart 2D DMA controller for main memory access without stalls
ILP Diagram

Control Unit
- 32-bit data
- Program Counter
- Loads & Stores

Vector Unit
- 64-bit SIMD data
- ALU
- Multiplier
- Accumulator

IMEM
- 32

Bus Fabric
- 32

Data Mux & Formatter
- 64

Regfile
- 3-port
- 5-port
ILP Programming

64-bit dual CU/VU instruction

32-bit CU instruction

32-bit VU instruction

- CU & VU operate in lock-step
- CU manages address calculation and data load/store
- VU performs SIMD data processing

```
// CU INSTRUCTION    // VU INSTRUCTION
vlwbx  v6, 0(r3)   ; mult   Acc0, v1, v2
vlwbx  v7, 4(r3)   ; madd   Acc0, v1, v3
mfv    r10, v21    ; madd   Acc0, v1, v4
addi   r10, r10, 4 ; madd   Acc0, v1, v5
mtv    v21, r10    ; mult   Acc1, v1, v6
slt    r4, r1, r9  ; madd   Acc1, v1, v7
mfa    v3, Acc0    ; and    v11, v0, v0
bnez   r4, loop    ; pack   v4, v3, 3
vsw    v4, 0(r2)   ; merge18 v10, v4, v4
addi   r1, r1, 16  ; sle8   v0, v10, v20
```
Multiplier Throughput

- 12 fixed-point 16-bit MACs per cycle
 - No sources of processor stalls
 - CU moves data to keep VU fed
- Round, shift, saturate data transforms performed during move from accumulator
- Move from accumulator can be performed by CU
Broadcast Multiply

- Eliminates transpose
- Eliminates intermediate storage
- Eliminates reduction add

Transpose, SIMD multiply, reduction add

SIMD broadcast multiply
ILP Speed Enhancements

- No MMU or FPU
 - No TLB lookup paths
- 2 branch delay slots
 - No branch prediction required
- 2 load delay slots
 - Full cycle for data memory access
 - Full cycle for data mux and formatter
- No cache
 - No tag compare
DMA Controller

- Processors with caches spend significant time stalled for the service of misses
- Video data access patterns are regular
- A 2D DMA controller yields better performance than caches
 - Smaller: no cache control/prediction logic
 - Faster & deterministic: no stalls
 - The cost: software overhead
Per Block Decode

- OLP 0: CA VLC, CABAC
- DMA ctrl: load prediction source
- ILP 0: reconstruction
- ILP 1: iDCT, apply deltas
- OLP 1: Debloocing thresholds
- ILP 2: Debloocing Filter
- Store block

Ultra Data Corp
UD3000 Statistics

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Synthesizable soft core and software for industry-leading codecs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Shared memory multiprocessor</td>
</tr>
<tr>
<td>Technology</td>
<td>130 nm target (portable)</td>
</tr>
<tr>
<td>Speed</td>
<td>400 MHz worst case</td>
</tr>
<tr>
<td>Throughput</td>
<td>4.8 GMACS</td>
</tr>
<tr>
<td>Performance</td>
<td>H.264 Main Profile Level 4.1</td>
</tr>
</tbody>
</table>
FPGA Video Decode

- Demo available from Altera and Ultra Data
- Decode of an H.264 stream
- Ultra Data RTL and software
- H.264 Main Profile at SDTV resolution at 75 MHz
- HDTV achievable in silicon at 400 MHz

Altera Nios Development Kit
Stratix Professional Edition
Ultra Data Corp

Video Decoder Chip

SDRAM

SATA & I²C busses

Optics sled

Control / audio processor

SDRAM controller

I²C, SATA, timers

DVD optical i/f, DeCSS, DeCPPM

DVD optical i/f, DeCSS, DeCPPM

Audio output

I²S / SPDIF / raw

Video output

S-video / raw

24-bit RGB

or 8/16-bit YCrCb

Audio / Video DACs

Ultra Data

UD3000

Video Processor

Frame scaler & de-interlacer

Peripheral bus bridge

Peripheral bus

processor-local high-speed bus

Ultra Data Corp
Summary

- Next generation consumer video requires six to ten times the processing power
- The UD3000 provides this through its video optimized architecture
 - Shared memory multiprocessor for a pipelined data flow
 - An inner loop processor with a speed optimized architecture and 4.8 GMACS for matrix multiplication
 - A smart DMA memory interface